

Ntimed A NTPD replacement–

Poul-Henning Kamp

phk@FreeBSD.org

phk@Varnish.org

@bsdphk

NB: This talk is backwards!

* What is Ntimed going to be

* What is Ntimed right now

* Why did the world need Ntimed

* What's wrong with NTPD ?

Ntimed what's the plan ?–

* Ntimed-client -- ”steer my clock”

Tiny, easily portable, DWIM.

* Ntimed-slave -- ”relay time service”

Lightweight, robust, resilient, policy.

* Ntimed-master -- ”primary time service”

The full monty.

* License = BSD 2-clause

Ntimed-master -- ”primary time service”

Target: Time-nuts, Time-lords &c

Task: Turn time-machinery (GPS, Atoms, Quasars)
 into Network time suppliers

Protocols: NTP (later: PTP)

Size: < 30KLOC

Status: Planned

Ntimed-master architecture

* A program for experimental science

* Python for high-level science-bits
 (see: GNUradio it works)–
 Clock-selection
 Clock-discipline/PLL
 Clock-modelling
 Policy

* Real time and protocol bits in C
 Security, Performance etc.

* Sandboxing
 Refclock code in separate ”jail” processes
 Refclocks in any language you like

Ntimed-slave -- ”relay time service”

Target: 2-3 per datacenter/ISP/VPN/...

Task: Import time-service into environment

Protocols: Outside: NTP Inside: NTP (PTP ?)

Size: < 20KLOC

Status: 33% (=ntimed-client)

Ntimed-slave architecture

1 thread -> acquire time
 = Ntimed-client
 Possibly: + more policy controls

1 thread per interface -> deliver time

1 CLI thread for operation/monitoring

”thread” likely ”sub-process” for jail/security

Focus: Operations, Statistics & Monitoring
 ie: Spot clients with wrong time.

Ntimed-client -- ”steer my clock”

Target: All computers in the world

Task: Put the system right on time

Protocols: NTP (later: PTP)

Size: < 10KLOC

Status: Prerelease

Ntimed-client architecture

Single thread, TODO list scheduling

Components:
 Server management
 DNS, which servers, how many servers.
 Clock Estimation
 Based on triangular pdfs
 Clock steering
 Adaptive PLL
 Kernel Interface
 Get(), Step(), Steer(), Sleep()
 Leap Second mitigation
 If, When, How

Green Computing

Single- vs. Multithreading

I'm a big fan of multithreading
 My other projects are FreeBSD and Varnish

But Ntimed basically does:

while (1) {
 sleep(x);
 send_packet();
 receive_packet();
 do_math();
 if (needed)
 adjust_kernel_clock();
}

Ntimed-client security calculus

Privileged Interactions:

 Adjust kernel timescale

Unprivleged interactions:

 Send & Receive UDP packets

 Write logfiles

 Send syslog messages

Ntimed-client attack surface

NTP packets are 48 bytes, fixed format & numerical

 -> no scope for string based exploits

Numbers are in integer format

 -> no scope for IEEE-754 exception exploits

All RX packets discarded, except one reply for
 each packet we send.

 -> DoS surface/loading is minimal

Sandboxing is not free

Adds complexity
 Create trusted channels between jails

Sandboxes scale badly with portability
 fork(2) + setuid(2) + chroot(2)
 jail(2)
 MAC(2)
 POSIX Acls
 CAPSICUM
 Solaris Privileges
 SELinux
 Windows ?

Ntimed-client is not sandboxed

Cost/Benefit analysis came out negative.

(This decision will be revisited periodically)

If UNIX kernel-timekeeping was file-desc based

 ie: /dev/kernel_time

Ntimed-client could just drop privs after open.

Server Management

DNS, which servers, how many servers

 Used servers: Fast poll, unused: slow poll

 If DNS returns 10 servers, which do you use ?

 What happens when DNS response changes ?

 Incomplete.

 Discussions ongoing with pool.ntp.org

Clock Estimation

We have two timescales, we think they are the same

local clock

remote clock

t=
x

Clock Estimation

Lets send a packet and ask the other guy

local clock

remote clock

t=
x

Local TX @ t=1 local timescale
Remote RX @ t=2
Remote TX @ t=3 remote timescale
Local RX @ t=4

We know: t=1 ≤ (t=2, t=3) ≤ t=4

Clock Estimation

Ok, so that wasn't so precise...

local clock

remote clock

t=
x

t1 = t2

Local ahead

t3 = t4

Local behind

”somewhere
in

the middle”

Clock Estimation

Triangular Probability Distribution Functions

local clock

remote clock

t=
x

Probability

Local ahead Local behind

Clock Estimation

Lower TTL = sharper TPDF

Probability

Local ahead Local behind

Clock Estimation

Ask N servers get N replies, do math...

Local ahead Remote ahead

Clock Estimation

1

10

100

1000

10000

-0.1 -0.05 0 0.05 0.1

DK
US
NZ

LAN

Clock Estimation

-0.02 -0.01 0 0.01 0.02

Best server

Combined estimate

Clock steering

Adaptive PLL

Computer clocks are strange beasts

Not built for timekeeping

Routinely travel in time/space

* VM's migrating to different hardware

* Suspend/Resume

How time-nuts treat Quartz Crystals

Photos: Steve Smith, G8LMX

How PCs treat Quartz Crystals

Crystal, (5 cents)

How PCs treat Quartz Crystals

Crystal, (5 cents)

100 W variable and
unpredicatable
electrical heater

Clock steering

Kernel Interface

Deliberately kept minimal for portability

 Get() -- Tell me the time
 clock_gettime(3) / gettimeofday(3)

 Step() -- Set the time (right now!)
 clock_settime(3) / settimeofday(3)

 Steer() -- Adjust the rate of time (frequency)
 ntp_adjtime(3)

 Sleep() -- Wake me up later
 sleep(3)/usleep(3)

Leap Second Mitigation

If, When, How.

NTP servers are historically bad at this

Limited room for client creativity

”Leap-Smear” is *NOT* a client activity

 Paris, 5 January 2015

 Bulletin C 49

 To authorities responsible for the measurement and distribution of time

 UTC TIME STEP
 on the 1st of July 2015

 A positive leap second will be introduced at the end of June 2015.
 The sequence of dates of the UTC second markers will be:

 2015 June 30, 23h 59m 59s
 2015 June 30, 23h 59m 60s
 2015 July 1, 0h 0m 0s

 The difference between UTC and the International Atomic Time TAI is:

 from 2012 July 1, 0h UTC, to 2015 July 1 0h UTC : UTC-TAI = - 35s
 from 2015 July 1, 0h UTC, until further notice : UTC-TAI = - 36s

 Daniel Gambis
 Head
 Earth Orientation Center of IERS
 Observatoire de Paris, France

Leap Second Mitigation

Pondering DNS based ”Bulletin-C service”

$ dig bulletin-c.example.com
bulletin-c.example.com 86400 IN A 244.20.141.253
[...]

 1111 + [y*12+m] + [dut1] + [leap] + [crc8]
 w=4 w=9 w=7 w=2 w=8

244.8.140.197 -> @ y2015m01 dut1=35 +0
244.20.141.253 -> @ y2015m07 dut1=35 +1
244.8.144.63 -> @ y2015m12 dut1=36 +0

Portable client: Only getaddrinfo(3) needed

Green computing considerations

2014Q2 server sales: 2 million
Assume 100W per server
Assume 25% runs Ntimed-client
Assume Ntimed-client uses 0.1% of resources

2e6 * .25 * 0.001 = 500 servers 100%

500 servers * 0.1kW = 50 kW

50 kW * ½ year = 220 MWh

200 Mwh ≅ 110 t CO
2
 emissions

What is Ntimed right now ?

Ntimed-client prereleased at github:

 https://github.com/bsdphk/Ntimed

Works, but missing:
 Server mgt.
 Leap second mitigation

$ cat *.[ch] | wc -l
 4669

Written in ”Varnish Style”:
 Max paranoia (356 lines contains asserts)
 FlexeLint clean

What is Ntimed right now ?

Portability:

 Known good: FreeBSD, Various Linuxen
 Known bad: OS/X (kernel support)
 Not quite clear: Solaris, NetBSD, OpenBSD

$ time sh configure
Found bsd.prog.mk, will use it.
Makefile generated, remember to run 'make depend'
0.000u 0.011s 0:00.01 100.0% 0+0k 1+0io 12pf+0w

Why did the world need Ntimed ?

Short answer:

HEARTBLEED

Long answer:

Critical FOSS projects are understaffed,
overworked, and unable to do a competent job.

Post-HEARTBLEED The Linux Foundation spotted the
NTPD project as one of these, and threw some
funding at the problem.

... or rather: At Harlan and me.

So why didn't you just fix NTPD ?

I tried, I really tried!

But...

$ find . -name '*.[ch]' -print | wc -l
 828
$ find . -name '*.[ch]' -print | xargs cat | wc -l
 363194

I spent many weeks trying to find out where to
stick the knife in...

NTPD is doomed

I could have renovated NTPD, but it would not be
cost or time efficient.

Many advantages to a fresh start:

 Eradicate the many woo-doo workarounds

 Eliminate outdated assumptions

 Lay down good security architecture up front
 (rather than it being the far end goal)

Is NTPD safe ?

Right now ? Yes, I think so.

In the long term ? No.

What's wrong with NTPD

Copyright (C) 1970-2014 The University of Delaware

If 1970 is correct: (Harlan ?)
 Led Zeppelin IV (1971)
 Last Sean Connery James Bond Movie (1971)
 Muppet Show didn't exist for another four years

RFC778 18 april 1981
 Indiana Jones: Raiders of the Lost Ark
 Das Boot
 Suzanne Vega ”Toms Diner”
 Jean-Michell Jarre ”Magnetic Fields”
 Kraftwerk ”Computer World”
 Electric Light Orchestra ”Time”
 ABBA ”The Visitors”

It runs on PDP/11 with FUZZBALL OS

Initially it made sense to have one big program

NTPD has grown and grown and grown...

Lots of contributor code with approx 1 user.

Refclocks for stuff eBay has never heard of

It just got out of hand...

How do you even test this ?

NTPD used to have a simulation mode.

Could test some of the math.

I tried to resurrect it, but it had been buried
in well intentioned changes.

Probably because only Dave and I ever used it...

NTPD was Daves program

And he cares a lot about timekeeping...

That is why I managed to get the ”nanokernel”
past his review and into NTPD

But he doesn't care about other stuff...

Which is why none of my other patches made it.

The problem with saints...

Dave failed to arrange a succession as his
eye-sight deteriorated.

Harlan Stenn tried to hold the bits together

Created Network Time Foundation

... Which kept NTPD alive and ticking

... on life-support.

A personal note of thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

